Premium
Involvement of the dorsal subiculum and rostral basolateral amygdala in cocaine cue extinction learning in rats
Author(s) -
Szalay Jonathan J.,
Morin Nicole D.,
Kantak Kathleen M.
Publication year - 2011
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.1460-9568.2010.07581.x
Subject(s) - extinction (optical mineralogy) , basolateral amygdala , subiculum , psychology , amygdala , neuroscience , addiction , lidocaine , hippocampus , self administration , anesthesia , dentate gyrus , medicine , chemistry , mineralogy
Memory system circuitry may regulate how cues associated with cocaine are extinguished, and understanding neurosubstrates of extinction may lead to the development of improved treatment strategies for cocaine addiction. Sites within the hippocampus and amygdala were investigated for their role in regulating cocaine cue extinction learning. Initially, rats were trained to self‐administer cocaine under a second‐order reinforcement schedule (cocaine and cocaine cues present) followed by a 2‐week abstinence period. Using lidocaine, rats next underwent bilateral inactivation of the dorsal subiculum (dSUB) or rostral basolateral amygdala (rBLA), asymmetric inactivation of the dSUB and rBLA, unilateral inactivation of the dSUB or rBLA, or ipsilateral inactivation of the dSUB and rBLA prior to cocaine cue extinction training sessions (only cocaine cues present) on two consecutive days. Relative to vehicle, bilateral and asymmetric lidocaine treatments in the dSUB and rBLA slowed cocaine cue extinction learning. Specifically, vehicle‐treated rats exhibited a significantly larger difference in responding from Day 1 to Day 2 of extinction training than lidocaine‐treated rats. In comparison, unilateral or ipsilateral lidocaine treatments in the dSUB and rBLA did not slow cocaine cue extinction learning. Rats treated with lidocaine and vehicle exhibited a similar difference in responding from Day 1 to Day 2 of extinction training. These results indicate that sites within the hippocampus and amygdala need to be functionally active simultaneously in at least one brain hemisphere for acquisition of cocaine cue extinction learning. These results further suggest that a serial circuit within each hemisphere mediates acquisition of cocaine cue extinction learning.