z-logo
Premium
AMPA‐receptor trafficking and injury‐induced cell death
Author(s) -
Beattie Michael S.,
Ferguson Adam R.,
Bresnahan Jacqueline C.
Publication year - 2010
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.1460-9568.2010.07343.x
Subject(s) - ampa receptor , receptor , cell injury , microbiology and biotechnology , neuroscience , medicine , biology , glutamate receptor , apoptosis , genetics
AMPA receptors (AMPARs) are critical for synaptic plasticity, and are subject to alterations based on subunit composition and receptor trafficking to and from the plasma membrane. One of the most potent regulators of AMPAR trafficking is the pro‐inflammatory cytokine tumor necrosis factor (TNF)α, which is involved in physiological regulation of synaptic strength (Beattie et al. , (2002) Science , 295 , 2282–2285; Stellwagen and Malenka, (2006) Nature,   440 , 1054–1059) and is also present at high concentrations after CNS injury. Here, we review evidence that TNF can rapidly alter the surface expression of AMPARs so that the proportion of Ca ++ ‐permeable receptors is increased and that this increase, in combination with increased levels of extracellular glutamate after injury, plays an important role in enhancing excitotoxic cell death after CNS injury. Thus, the pathophysiological hijacking of a critical regulator of synaptic plasticity and homeostasis by the secondary injury cascade may represent a new therapeutic target for neuroprotection.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here