z-logo
Premium
Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood–spinal cord barrier
Author(s) -
Rauch Millicent Ford,
Hynes Sara Royce,
Bertram James,
Redmond Andy,
Robinson Rebecca,
Williams Cicely,
Xu Hao,
Madri Joseph A.,
Lavik Erin B.
Publication year - 2009
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.1460-9568.2008.06567.x
Subject(s) - angiogenesis , spinal cord injury , spinal cord , progenitor cell , implant , neovascularization , blood vessel , medicine , cord blood , pathology , stem cell , anatomy , microbiology and biotechnology , surgery , biology , immunology , neuroscience , cancer research
Angiogenesis precedes recovery following spinal cord injury and its extent correlates with neural regeneration, suggesting that angiogenesis may play a role in repair. An important precondition for studying the role of angiogenesis is the ability to induce it in a controlled manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional vascular networks in vivo in a subcutaneous model. We sought to test whether a similar coculture would lead to the formation of stable functional vessels in the spinal cord following injury. We created microvascular networks in a biodegradable two‐component implant system and tested the ability of the coculture or controls (lesion control, implant alone, implant + ECs or implant + NPCs) to promote angiogenesis in a rat hemisection model of spinal cord injury. The coculture implant led to a fourfold increase in functional vessels compared with the lesion control, implant alone or implant + NPCs groups and a twofold increase in functional vessels over the implant + ECs group. Furthermore, half of the vessels in the coculture implant exhibited positive staining for the endothelial barrier antigen, a marker for the formation of the blood–spinal cord barrier. No other groups have shown positive staining for the blood–spinal cord barrier in the injury epicenter. This work provides a novel method to induce angiogenesis following spinal cord injury and a foundation for studying its role in repair.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here