z-logo
Premium
Melatonin induces gene‐specific effects on rhythmic mRNA expression in the pars tuberalis of the Siberian hamster ( Phodopus sungorus )
Author(s) -
Wagner Gabriela C.,
Johnston Jonathan D.,
Tournier Benjamin B.,
Ebling Francis J. P.,
Hazlerigg David G.
Publication year - 2007
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.1460-9568.2006.05291.x
Subject(s) - melatonin , pars tuberalis , per1 , phodopus , medicine , biology , endocrinology , circadian rhythm , hamster , clock , suprachiasmatic nucleus , prolactin , circadian clock , pineal gland , pituitary gland , hormone
In mammals, circadian and photoperiodic information is encoded in the pineal melatonin signal. The pars tuberalis (PT) of the pituitary is a melatonin target tissue, which transduces photoperiodic changes and drives seasonal changes in prolactin secretion from distal lactotroph cells. Measurement of photoperiodic time in the PT is believed to occur through melatonin dependent changes in clock gene expression, although it is unclear whether the PT should be considered a melatonin sensitive peripheral oscillator. We tested this hypothesis in the Siberian hamster ( Phodopus sungorus ) firstly by investigating the effects of melatonin injection, and secondly by determining whether temporal variation in gene expression within the PT persists in the absence of a rhythmic melatonin signal. Hamsters preconditioned to long days were treated with melatonin during the late light phase, to advance the timing of the nocturnal melatonin peak, or placed in constant light for one 24 h cycle, thereby suppressing endogenous melatonin secretion. Gene expression in the PT was measured by in situ hybridization. We show that melatonin rapidly induces cry1 mRNA expression without the need for a prolonged melatonin‐free interval, acutely inhibits mt1 expression, advances the timing of peak rev‐erbα expression and modulates per1 expression. With the exception of cry1 , these genes continue to show temporal changes in expression over a first cycle in the absence of a melatonin signal. Our data are consistent with the hypothesis that the hamster PT contains a damped endogenous circadian oscillator, which requires a rhythmic melatonin signal for long‐term synchronization.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here