Premium
Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginata
Author(s) -
Sullivan Jeremy M.,
Beltz Barbara S.
Publication year - 2005
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.1460-9568.2005.04449.x
Subject(s) - neurogenesis , biology , olfactory system , neuroscience , olfactory receptor , moulting , olfaction , ecology , larva
Life‐long neurogenesis is a characteristic feature of the olfactory pathways of a phylogenetically diverse array of animals. In both vertebrates and invertebrates, the life‐long addition of olfactory interneurons in the brain occurs in parallel with the continuous proliferation of olfactory receptor neurons in the olfactory organ. It has been proposed that these two processes are related functionally, with new olfactory interneurons being added to accommodate the new olfactory receptor neurons added in the periphery. While this has not been tested directly because the two processes are not readily separable, this question can be addressed in the olfactory pathway of the crab, Libinia emarginata . Unlike most decapod crustaceans, which moult and grow throughout life, L. emarginata has a terminal, maturational moult after which animals become anecdysic (stop moulting). Because the addition of new receptor neurons in crustaceans is associated with moulting, a comparison of neurogenesis in immature and mature L. emarginata provides an opportunity to examine the interdependence of central and peripheral neurogenesis in the olfactory pathway. This study demonstrates that the continuous addition of olfactory receptor neurons in L. emarginata ceases at the terminal moult but that proliferation and differentiation of olfactory interneurons in the brain continues in mature animals. Contrary to the general assumption, therefore, continuous neurogenesis in the central olfactory pathway of this species does not occur as part of a process involving the coregulation of central and peripheral neurogenesis. These findings suggest that peripheral neurogenesis is not a requirement for continuous neurogenesis in the central olfactory pathway.