Premium
The actin‐binding protein profilin I is localized at synaptic sites in an activity‐regulated manner
Author(s) -
Neuhoff Henrike,
SassoèPognetto Marco,
Panzanelli Patrizia,
Maas Christoph,
Witke Walter,
Kneussel Matthias
Publication year - 2005
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.1460-9568.2004.03814.x
Subject(s) - profilin , dendritic spine , gephyrin , microbiology and biotechnology , biology , actin remodeling of neurons , actin remodeling , actin , synaptic plasticity , actin binding protein , synapse , hippocampal formation , mdia1 , synaptophysin , neuroscience , chemistry , actin cytoskeleton , cytoskeleton , biochemistry , receptor , cell , glycine receptor , glycine , immunohistochemistry , amino acid , immunology
Morphological changes at synaptic specializations have been implicated in regulating synaptic strength. Actin turnover at dendritic spines is regulated by neuronal activity and contributes to spine size, shape and motility. The reorganization of actin filaments requires profilins, which stimulate actin polymerization. Neurons express two independent gene products − profilin I and profilin II. A role for profilin II in activity‐dependent mechanisms at spine synapses has recently been described. Although profilin I interacts with synaptic proteins, little is known about its cellular and subcellular localization in neurons. Here, we investigated the subcellular distribution of this protein in brain neurons as well as in hippocampal cultures. Our results indicate that the expression of profilin I varies in different brain regions. Thus, in cerebral cortex and hippocampus profilin I immunostaining was associated predominantly with dendrites and was present in a subset of dendritic spines. In contrast, profilin I in cerebellum was associated primarily with presynaptic structures. Profilin I immunoreactivity was partially colocalized with the synaptic molecules synaptophysin, PSD‐95 and gephyrin in cultured hippocampal neurons, indicating that profilin I is present in only a subset of synapses. At dendritic spine structures, profilin I was found primarily in protrusions, which were in apposition to presynaptic terminal boutons. Remarkably, depolarization with KCl caused a moderate but significant increase in the number of synapses containing profilin I. These results show that profilin I can be present at both pre‐ and postsynaptic sites and suggest a role for this actin‐binding protein in activity‐dependent remodelling of synaptic structure.