z-logo
Premium
The Isolation and Identification of Spinal Neurons That Control Movement in the Xenopus Embryo
Author(s) -
Dale Nicholas
Publication year - 1991
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.1460-9568.1991.tb00039.x
Subject(s) - xenopus , neuroscience , glycine receptor , inhibitory postsynaptic potential , neuron , biology , spinal cord , kainate receptor , motor neuron , excitatory postsynaptic potential , nmda receptor , glutamate receptor , anatomy , receptor , ampa receptor , glycine , biochemistry , gene , amino acid
A procedure for isolating spinal neurons of the Xenopus embryo has been devised. Using a variety of methods four of the eight previously described categories of neuron can be distinguished in vitro. Firstly, since many anatomical features of the neurons survived dissociation, sensory neurons and glycinergic inhibitory interneurons could be identified after isolation using anatomical criteria. Secondly, by selective labelling of the neurons in the intact spinal cord with fluorescein‐conjugated dextran amines prior to dissociation, three classes of isolated neuron could be identified: motoneurons, putative excitatory interneurons and, once again, inhibitory interneurons. The identity of the inhibitory interneurons has been confirmed using glycine immunocytochemistry. The physiological properties of the isolated neurons were similar to those of their in vivo counterparts. The dissociated neurons exhibited strong membrane accommodation and outward rectification, both of which could be blocked by the injection of Cs + ions. The neurons also retained their receptors for the agonists N ‐methyl‐ d ‐aspartate, kainate, quisqualate, glycine and GABA. Both the membrane properties and pharmacological sensitivity of the isolated neurons therefore appeared to be unaltered by the dissociation procedure. Thus the four classes of neuron from the Xenopus embryonic nervous system that can be identified after isolation constitute the basis for a valid model for detailed study of how the properties of individual neurons contribute to the functioning of the circuitry that underlies locomotor pattern generation in vertebrates.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here