z-logo
Premium
Plastic zone size estimation under cyclic loadings using in situ optical microscopy fatigue testing
Author(s) -
ZHANG W.,
LIU Y.
Publication year - 2011
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/j.1460-2695.2011.01567.x
Subject(s) - materials science , digital image correlation , crack closure , optical microscope , paris' law , plasticity , structural engineering , composite material , cyclic stress , fracture mechanics , engineering , scanning electron microscope
An  in situ  optical microscopy fatigue testing is proposed in this paper to investigate the forward and reversed plastic zone size under cyclic loadings for Al‐7075‐T6. This experimental study is used to verify the hypotheses in a recently developed small time scale formulation of fatigue crack growth. During the testing, the entire cyclic loading cycle is divided into a certain number of steps. Images of the crack tip are taken at each step. The full strain field around the crack tip is determined using the digital image correlation (DIC) technique. The plastic zone size is obtained by combining the DIC results and the material constitutive relationship. Experimental measurements from the proposed study are compared with theoretical predictions. It is observed that the crack closure has a large effect on the reversed plastic zone size. The plastic zone size remains almost constant when the unloading path is below a certain stress level, which is one of the hypotheses used in a previous crack growth model. Discussions are given for the modelling of plastic zone size variation under cyclic loadings and several conclusions are drawn based on the current investigation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here