z-logo
Premium
Effects of annealing and quenching on fatigue behaviour in type 444 ferritic stainless steel
Author(s) -
AKITA M.,
NAKAJIMA M.,
UEMATSU Y.,
TOKAJI K.
Publication year - 2008
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/j.1460-2695.2008.01285.x
Subject(s) - materials science , annealing (glass) , metallurgy , intergranular corrosion , grain boundary , corrosion fatigue , quenching (fluorescence) , fatigue limit , composite material , corrosion , microstructure , physics , quantum mechanics , fluorescence
In order to understand the effects of annealing and quenching on fatigue behaviour in type 444 stainless steel, fully reversed axial fatigue tests have been performed using smooth specimens of heat‐treated materials in laboratory air and 3%NaCl aqueous solution. Three materials subjected to different heat treatments, annealing at 960 and 1000 °C, and water‐cooling at 960 °C, were prepared. In laboratory air, the fatigue limit of the annealed specimens was lower than that of the as‐received specimen and decreased with increasing annealing temperature. The subsequent grain coarsening from the heat treatments was primarily responsible for the lower fatigue strength in the annealed specimens. The fatigue strength of the water‐cooled specimen was lower than that of the corresponding annealed specimen. In the annealed specimens, cracks were generated within ferritic grains, while in the water‐cooled specimen, at or near grain boundaries. In 3%NaCl solution, the fatigue strengths of all specimens decreased compared with those in laboratory air. Only in the water‐cooled specimens, crack initiation at grain boundary and intergranular crack growth were observed, indicating the most sensitive to corrosion environment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here