z-logo
Premium
Fatigue crack propagation in the wing to fuselage connection of the new trainer aircraft M346
Author(s) -
LANCIOTTI A.,
NIGRO F.,
POLESE C.
Publication year - 2006
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/j.1460-2695.2006.01062.x
Subject(s) - fuselage , structural engineering , damage tolerance , engineering , paris' law , joint (building) , fracture mechanics , fatigue limit , materials science , crack closure , composite material , composite number
The series version of the M346 military trainer aircraft is currently under construction at Aermacchi (Venegono Superiore, Italy). The design target life of the aircraft, which will be certified for Damage Tolerance, is 12 000 flight hours (FH), with the possible extension to 16 000 FH after specific inspections. Fatigue tests were performed on critical elements at the Department of Aerospace Engineering at University of Pisa in order to verify crack propagation calculations. The wing to fuselage connection is one of the most interesting elements from the fatigue point of view. Spars and frames, both integrally machined, are connected by two lug‐fork joints; the base material is aluminium alloy 7050‐T7451 for both the elements. High interference bushings, ForceMate®, produced by FTI (Fatigue Technology Inc., Seattle, WA) were used in the lug/fork connections. Experimental activity was carried out on two different specimens. The first, a Compact Tension specimen, was tested under constant amplitude loading to verify the fatigue crack growth rate data contained in NASGRO 4, the software used for Damage Tolerance evaluations. Experimental results were fully comparable with the NASGRO 4 material database. Additional variable amplitude loading tests were carried out in order to calibrate crack growth prediction models used in the analyses. The second specimen was a lug‐fork joint designed as the actual joints present on the aircraft. Both constant and variable amplitude loading fatigue tests were carried out in this case too. Results obtained clearly indicated the beneficial effect of ForceMate bushings, compared to shrink fit bushings.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here