Premium
The use of multiaxial fatigue models to predict fretting fatigue life of components subjected to different contact stress fields
Author(s) -
ARAÚJO J. A.,
NOWELL D.,
VIVACQUA R. C.
Publication year - 2004
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/j.1460-2695.2004.00820.x
Subject(s) - fretting , mesoscopic physics , materials science , contact mechanics , structural engineering , stress (linguistics) , plane (geometry) , fatigue testing , composite material , engineering , finite element method , mathematics , physics , condensed matter physics , geometry , linguistics , philosophy
This work describes the application of multiaxial fatigue criteria based on critical plane and mesoscopic (Dang Van, 1973, Sciences et Techniques de lÁrmement, 47 , 647—722) approaches to predict the fatigue initiation life of fretted components. To validate the analysis, several tests under closely controlled laboratory conditions are carried out in a Ti‐6Al‐4V alloy. These classical Hertzian tests reveal a size effect where fretting fatigue lives vary with contact size. Experimentally available data for fretting fatigue of an Al‐4Cu alloy are also used to assess the models. Neither the critical plane models nor the mesoscopic criterion considered can account for the effects of different contact stress fields on the initiation life, if the calculation is based only on highly stressed points on the surface. It is shown, however, that satisfactory results can be achieved if high values of the fatigue parameters are sustained over a critical volume.