Premium
EFFECTS OF COLD EXPANSION OF A HOLE ON FATIGUE CRACK INITIATION LOCATION AND LIFE OF AN LY12CZ ALLOY
Author(s) -
Chao Ling,
Xiulin Zheng
Publication year - 1992
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/j.1460-2695.1992.tb01267.x
Subject(s) - materials science , crack closure , mandrel , structural engineering , alloy , fatigue testing , residual stress , hardening (computing) , composite material , fracture mechanics , engineering , layer (electronics)
— In the present study the effects of cold expansion of a hole on the location of fatigue crack initiation and life of LY12CZ alloy sheets are experimentally investigated and a quantitative expression of fatigue crack initiation life presented. Test results and analysis show that there may exist an optimum amount of cold expansion, for which both the coefficient of the resistance to fatigue crack initiation and the threshold are increased, and that the direction of cold expansion has no appreciable effect on fatigue crack initiation life. Observations show that, after cold expansion the fatigue crack nearly always initiates on the final entry face from which the mandrel is introduced into the hole during the final cold expansion process. Therefore it may be thought that the entry face is less resistant to fatigue crack initiation. In addition, the assumption of equivalence of residual stresses and also the strain hardening conditions on both the entry and exit faces may be questionable.