Premium
Assessing the accuracy of small satellite transmitters on free‐living flying‐foxes
Author(s) -
McKEOWN ADAM,
WESTCOTT DAVID A.
Publication year - 2012
Publication title -
austral ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.688
H-Index - 87
eISSN - 1442-9993
pISSN - 1442-9985
DOI - 10.1111/j.1442-9993.2011.02276.x
Subject(s) - telemetry , habitat , percentile , scale (ratio) , satellite , ecology , confidence interval , environmental science , home range , systematic error , ranging , remote sensing , statistics , geography , computer science , biology , cartography , mathematics , telecommunications , geodesy , aerospace engineering , engineering
Satellite telemetry using ARGOS platform transmitter terminals (PTTs) is widely used to track the movements of animals, but little is known of the accuracy of these systems when used on active terrestrial mammals. An accurate estimate of the error, and therefore the limitations of the data, is critical when assessing the level of confidence in results. ARGOS provides published 68th percentile error estimates for the three most accurate location classes (LCs), but studies have shown that the errors can be far greater when the devices are attached to free‐living animals. Here we use data from a study looking at the habitat use of the spectacled flying‐fox in the wet tropics of Queensland to calculate these errors for all LCs in free‐living terrestrial mammals, and use these results to assess what level of confidence we would have in habitat use assignment in the study area. The results showed that our calculated 68th percentile errors were larger than the published ARGOS errors for all LCs, and that for all classes the error frequency had a very long tail. Habitat use results showed that the size of the error compared with the scale of the habitat the study was conducted in makes it unlikely that our data can be used to assess habitat use with great confidence. Overall, our results show that while satellite telemetry results are useful for assessing large scale movements of animals, in complex landscapes they may not be accurate enough to be used for finer scale analysis including habitat use assessment.