z-logo
Premium
Biodiversity recovery during rainforest reforestation as indicated by rapid assessment of epigaeic ants in tropical and subtropical Australia
Author(s) -
PIPER SCOTT D.,
CATTERALL CARLA P.,
KANOWSKI JOHN J.,
PROCTOR HEATHER C.
Publication year - 2009
Publication title -
austral ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.688
H-Index - 87
eISSN - 1442-9993
pISSN - 1442-9985
DOI - 10.1111/j.1442-9993.2009.01943.x
Subject(s) - biodiversity , rainforest , reforestation , ecology , species richness , biology , tropical rainforest , agroforestry , geography
There is growing interest in the potential for reforestation to assist the recovery of rainforest biodiversity. There is also a need to identify taxonomically tractable groups for use as cost‐effective indicators when monitoring the status of biodiversity within reforested sites. Insects are an important component of terrestrial biodiversity but often require considerable resources to sample at species level. Ant genera and generic‐based functional groups have been suggested as possible indicators of environmental disturbance. Here we ask to what extent the development of biodiversity is indicated by epigaeic ant genera and functional groups, across different types of reforestation in tropical and subtropical Australia. In each region, we used pitfall traps to sample the ants in replicate sites of: unmanaged regrowth, monoculture and mixed species plantations and ‘ecological restoration’ plantings, together with reference sites in pasture and rainforest. We recorded 35 epigaeic ant genera (and 4623 individuals) from 50 tropical sites, and 39 genera (and 9904 individuals) from 54 subtropical sites, with 47 genera overall. Community composition of both genera and functional groups differed between pasture and rainforest, although many genera were widespread in both. Reforested sites were intermediate between pasture and rainforest in both regions, and showed a gradient associated with decreasing grass and increasing tree and litter cover. Older monoculture plantations and ecological restoration plantings had the most rainforest‐like ant assemblages, and mixed‐species cabinet timber plots the least, of the reforested sites. We conclude that ground‐active ant genera and functional groups sampled in rapid surveys by pitfall‐trapping showed only a modest ability to discriminate among different types of reforestation. Species‐level identification, perhaps together with expanded sampling effort, could be more informative, but would require resourcing beyond the scope of rapid assessments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here