Premium
Spatial analyses of intertidal assemblages on sheltered rocky shores
Author(s) -
UNDERWOOD A. J.,
CHAPMAN M. G.
Publication year - 1998
Publication title -
australian journal of ecology
Language(s) - English
Resource type - Journals
eISSN - 1442-9993
pISSN - 0307-692X
DOI - 10.1111/j.1442-9993.1998.tb00712.x
Subject(s) - intertidal zone , rocky shore , shore , ecology , spatial ecology , assemblage (archaeology) , habitat , temporal scales , abundance (ecology) , disturbance (geology) , fauna , natural (archaeology) , spatial variability , geography , intertidal ecology , replicate , oceanography , geology , biology , paleontology , statistics , mathematics , archaeology
Understanding processes in complex assemblages depends on good understanding of spatial and temporal patterns of structure at various spatial scales. There has been little quantitative information about spatial patterns and natural temporal changes in intertidal assemblages on sheltered rocky shores in temperate Australia. Natural changes and responses to anthropogenic disturbances in these habitats cannot be accurately measured and assessed without quantitative data on patterns of natural variability in space and through time. This paper describes some suitable quantitative methods for examining spatial and temporal patterns of diversity and abundances of highshore, midshore and lowshore intertidal assemblages and the important component species for a number of shores in a bay that has not been severely altered by human disturbance. Despite a diverse flora and fauna on these shores, the midshore and lowshore assemblages on sheltered shores were characterized by a few species which were also the most important in discriminating among assemblages on a shore and, for each assemblage, among different shores. The same set of species was also important for measuring small‐scale patchiness within each assemblage (i.e. between replicate sites on a shore). Therefore, these data provide a rationale for selecting species that are useful for measuring differences and changes in abundance among places and times at different scales and, hence, can be used in the more complex sampling designs necessary to detect environmental impacts. There was considerable spatial variability in all assemblages and all species (or taxa) examined at scales of metres, tens of metres and kilometres. There were no clear seasonal trends for most measures, with as much or more variability at intervals of 3 months as from year to year. Most interactions between spatial and temporal measures were at the smallest scale, with different sites on the same shore generally showing different changes from time to time. The cause(s) of this apparently idiosyncratic variability1 were not examined, but some potential causes are discussed. These data are appropriate for testing hypotheses about the applicability of these findings to other relatively undisturbed sheltered shores, about effects of different anthropogenic disturbances on sheltered intertidal assemblages and to test hypotheses about differences in intertidal assemblages on sheltered versus wave‐exposed shores.