z-logo
Premium
Seasonal and spatial patterns of population density in the marine macroalga Mazzaella splendens (Gigartinales, Rhodophyta)
Author(s) -
Dyck Leonard James,
De Wreede Robert E.
Publication year - 2006
Publication title -
phycological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.438
H-Index - 44
eISSN - 1440-1835
pISSN - 1322-0829
DOI - 10.1111/j.1440-1835.2006.00405.x
Subject(s) - biology , habitat , dominance (genetics) , ecology , population , population density , biological dispersal , biochemistry , demography , sociology , gene
SUMMARY Insight into demographic processes that operate at larger spatial scales can be achieved through studying local populations when a particular species of interest is examined over time, by many investigators, in a variety of locations. On the west coast of North America, Mazzaella splendens (Setchell et Gardner) Fredericq is such a species of interest. A synthesis of local demographic studies of M. splendens from the late 1960s to the present reveals a pattern that is potentially common to the larger natural populations. This is the pattern: population density is high in summer and low in winter for both alternate free‐living life history phases of M. splendens . The magnitude of this seasonal change decreases in increasingly wave‐exposed habitats. In wave‐sheltered habitats there is a seasonal alternation from summer haploid to winter diploid dominance. This alternation gradually changes to constant diploid dominance as wave exposure in the habitat increases. Changes in population density are primarily a function of appearances and disappearances of perennating basal crusts (genets), as modules are produced or lost, rather than differential module production by genets of one phase over those of the other. To test the generality of this pattern, we examined seasonal changes in density, in local populations of M. splendens , in both a wave‐sheltered and a wave‐exposed habitat at Second Beach, Barkley Sound. Greater seasonal fluctuation in population density at wave‐sheltered, compared to wave‐exposed habitats is supported as a pattern potentially common to the natural populations of M. splendens . A change from summer haploid dominance in wave‐sheltered areas to summer diploid dominance in wave‐exposed areas is similarly supported. All changes in population density were the result of appearances and disappearances of genets rather than differential module production by haploid versus diploid basal crusts, also consistent with previous observations. A seasonal alternation in phase dominance, however, was absent from the wave‐sheltered site at Second Beach, Barkley Sound for 3 consecutive years. Seasonal alternation in phase dominance of M. splendens appears dependent on local conditions and is not common to all natural populations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here