Premium
Determination of genomic damage in neuroblastic tumors by arbitrarily primed PCR: MYCN amplification as a marker for genomic instability in neuroblastomas
Author(s) -
Muñoz Jorge,
Vendrell Elisenda,
Aiza Gemma,
Nistal Manuel,
Pestaña Angel,
Peinado Miguel Angel,
Castresana Javier S.
Publication year - 2006
Publication title -
neuropathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.701
H-Index - 61
eISSN - 1440-1789
pISSN - 0919-6544
DOI - 10.1111/j.1440-1789.2006.00675.x
Subject(s) - neuroblastoma , biology , genome instability , cancer research , genetics , dna , dna damage , cell culture
The aim of this study is to establish an estimation of the global genomic alteration in neuroblastic tumors (ganglioneuromas, ganglioneuroblastomas and neuroblastomas) and correlate them with different clinical parameters (age, sex, diagnosis, Shimada index, proliferation index, tumor location, and 1p and v‐myc avian myelocitomatosis viral‐related (MYCN) status) in order to find new molecular and/or prognostic markers for neuroblastoma. To assess the genomic damage in neuroblastic tumors, we used an arbitrarily primed PCR approach, a technique based on the reproducibility of band profiles obtained by a PCR with a low annealing temperature in its first cycles. Genomic damage was assessed by comparing band profiles of tumors and normal paired samples. Gains and losses in the intensity of the bands were computerized and referred to the total number of bands analyzed. We found a higher genomic damage fraction (GDF) in the female’s group (U‐Mann–Whitney, P = 0.025), but we could not find any association between GDF and tumor location, proliferation index, diagnosis or age of the patient. There was no relationship between 1p status and GDF, but tumors with MYCN amplification had a slightly higher GDF. MYCN amplification might in some way contribute to genomic instability of neuroblastomas.