Premium
Three‐dimensional numerical modelling of the flushing process of the Kali Gandaki hydropower reservoir
Author(s) -
Haun Stefan,
Olsen Nils Reidar B.
Publication year - 2012
Publication title -
lakes and reservoirs: research and management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.296
H-Index - 39
eISSN - 1440-1770
pISSN - 1320-5331
DOI - 10.1111/j.1440-1770.2012.00491.x
Subject(s) - flushing , hydropower , sediment , erosion , geology , sedimentation , geotechnical engineering , petroleum engineering , hydrology (agriculture) , water level , sediment transport , flood myth , environmental science , geomorphology , engineering , medicine , electrical engineering , cartography , geography , endocrinology , philosophy , theology
Abstract Sediments filling reservoirs is a common problem in the world today, with an estimated 1% of the capacity of hydropower reservoirs being lost annually through sedimentation. One of the most used techniques for reducing this problem is reservoir flushing. During a flood, the water level is drawn down, causing increased velocities, therefore facilitating erosion and sediment transport. During the flushing, water from the reservoir will be lost, resulting in significant economic implications for the reservoir owner. The success of reservoir flushing depends on several parameters, including water discharge, sediment properties and reservoir geometry. This study describes the use of Computational Fluid Dynamics (CFD) as a modern method to predict the reservoir flushing process. A three‐dimensional numerical model (SSIIM 2), with an adaptive, non‐orthogonal and unstructured grid has been used. Through the application of special modified algorithms (e.g., wetting/drying, free water surface), numerical modelling of sediment movement can be an alternative for planning and optimizing the flushing process for complex reservoir geometries. The numerical model was tested against data from a physical model study of the Kali Gandaki hydropower reservoir in Nepal. The total quantity of flushed out sediments, and the bed deformation in six cross‐sections, were compared, highlighting a good correspondence between the results. These include the cross‐sectional shape of a 90‐degree bend, for which secondary currents influenced the results. The study indicates that numerical models might become a useful tool for reservoir flushing predictions.