z-logo
Premium
Lower crustal melting via magma underplating: Elemental and Sr–Nd–Pb isotopic constraints from late Mesozoic intermediate–felsic volcanic rocks in the northeastern North China Block
Author(s) -
LI CHAOWEN,
GUO FENG,
FAN WEIMING
Publication year - 2011
Publication title -
island arc
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.554
H-Index - 58
eISSN - 1440-1738
pISSN - 1038-4871
DOI - 10.1111/j.1440-1738.2011.00780.x
Subject(s) - geology , geochemistry , felsic , underplating , basalt , partial melting , crust , radiogenic nuclide , adakite , continental crust , fractional crystallization (geology) , mantle (geology) , lile , mafic , oceanic crust , subduction , paleontology , tectonics
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K 2 O and Al 2 O 3 /(CaO + K 2 O + Na 2 O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here