z-logo
Premium
Polo‐like kinase 1 is required for localization of Posterior End Mark protein to the centrosome‐attracting body and unequal cleavages in ascidian embryos
Author(s) -
Negishi Takefumi,
Kumano Gaku,
Nishida Hiroki
Publication year - 2011
Publication title -
development, growth and differentiation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 66
eISSN - 1440-169X
pISSN - 0012-1592
DOI - 10.1111/j.1440-169x.2010.01231.x
Subject(s) - centrosome , plk1 , spindle pole body , microbiology and biotechnology , biology , cleavage (geology) , multipolar spindles , polo like kinase , mitosis , microtubule associated protein , microtubule , cell division , spindle apparatus , cell cycle , gene , cell , genetics , paleontology , fracture (geology)
In ascidian embryos, the posterior‐localized maternal factor Posterior End Mark (PEM) is responsible for patterning embryos along the anterior‐posterior axis with regard to both cleavage pattern involving unequal cell divisions and gene expression. Although PEM plays important roles in embryogenesis, its mechanism of action is still unclear because PEM has no known functional domain. In the present study, we explored the candidate of PEM partner proteins in Halocynthia roretzi using yeast two‐hybrid screening. We isolated a homologue of Polo‐like kinase 1 (Plk1), a key regulator of cell division and highly conserved in eukaryotes, as the first potential binding partner of PEM. We biochemically confirmed that interaction occurred between the Plk1 and PEM proteins. Immunostaining showed that Plk1 protein concentrates in the centrosome‐attracting body (CAB) at the posterior pole, where PEM protein is also localized. The CAB is a subcellular structure that plays an important role in generating the posterior cleavage pattern. Plk1 localization to the CAB was dependent on the cell cycle phases during unequal cleavage. Inhibition of Plk1 with specific drugs resulted in failure of the nucleus to migrate towards the posterior pole and formation of a microtubule bundle between the CAB and a centrosome, similarly to inhibition of PEM function, suggesting that both proteins are involved in the same process of unequal cleavages. This interrupted nuclear migration was rescued by overexpression of PEM. In Plk1‐inhibited embryos, the localization of PEM protein to the CAB was impaired, indicating that Plk1 is required for appropriate localization of PEM.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here