Premium
Amphibian organ remodeling during metamorphosis: Insight into thyroid hormone‐induced apoptosis
Author(s) -
IshizuyaOka Atsuko
Publication year - 2011
Publication title -
development, growth and differentiation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 66
eISSN - 1440-169X
pISSN - 0012-1592
DOI - 10.1111/j.1440-169x.2010.01222.x
Subject(s) - metamorphosis , biology , amphibian , programmed cell death , microbiology and biotechnology , african clawed frog , apoptosis , extracellular matrix , xenopus , tadpole (physics) , genetics , ecology , gene , larva , physics , particle physics
During amphibian metamorphosis, the animal body dramatically remodels to adapt from the aquatic to the terrestrial life. Cell death of larval organs/tissues occurs massively in balance with proliferation of adult organs/tissues, to ensure survival of the individuals. Thus, amphibian metamorphosis provides a unique and valuable opportunity to study regulatory mechanisms of cell death. The advantage of this animal model is the absolute dependence of amphibian metamorphosis on thyroid hormone (TH). Since the 1990s, a number of TH response genes have been identified in several organs of Xenopus laevis tadpoles such as the tail and the intestine by subtractive hybridization and more recently by cDNA microarrays. Their expression and functional analyses, which are still ongoing, have shed light on molecular mechanisms of TH‐induced cell death during amphibian metamorphosis. In this review, I survey the recent progress of research in this field, focusing on the X. laevis intestine where apoptotic process is well characterized at the cellular level and can be easily manipulated in vitro . A growing body of evidence indicates that apoptosis during the intestinal remodeling occurs not only via a cell‐autonomous pathway but also via cell–cell and/or cell–extracellular matrix (ECM) interactions. Especially, stromelysin‐3, a matrix metalloproteinase, has been shown to alter cell–ECM interactions by cleaving a laminin receptor and induce apoptosis in the larval intestinal epithelium. Here, I emphasize the importance of TH‐induced multiple apoptotic pathways for massive and well‐organized apoptosis in the amphibian organs and discuss their conservation in the mammalian organs.