z-logo
Premium
Activation of Rac1 or Cdc42 during early morphogenesis of eye discs induces ectopic antennae in Drosophila
Author(s) -
Go Masahiro J.
Publication year - 2005
Publication title -
development, growth and differentiation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 66
eISSN - 1440-169X
pISSN - 0012-1592
DOI - 10.1111/j.1440-169x.2005.00798.x
Subject(s) - rac1 , decapentaplegic , morphogenesis , cdc42 , microbiology and biotechnology , biology , gtpase , phenotype , signal transduction , genetics , imaginal disc , gene
The Rho family small guanosine triphosphatases (GTPases) play important roles in many cellular processes, especially in regulation of cytoskeletal organization. In this study, I examined the functions of Rac1 and Cdc42 for disc morphogenesis in Drosophila . I expressed either a constitutively active form or a dominant negative form of each protein during early morphogenesis of eye discs. Inactivation of Rac1 or Cdc42 resulted in small eye phenotypes. On the other hand, I found that activation of either Rac1 or Cdc42 induces ectopic antennae. In some cases, an almost complete antenna was observed instead of an eye, which was possibly transformation from an eye to an antenna. As a molecular evidence for the ectopic antennae, I found that the Distal‐less protein, which is essential for the distalization process, was ectopically induced in the eye discs. I also found that the Decapentaplegic and Wingless proteins, which are upstream morphogenetic signaling proteins of the distalization process, could be ectopically induced by activation of Rac1 or Cdc42. My observations suggest novel functions of Rac1 and Cdc42 for disc morphogenesis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here