z-logo
Premium
Cell Migration and Induction in the Development of the Surface Ectodermal Pattern of the Xenopus laevis Tadpole
Author(s) -
Drysdale Thomas A.,
Elinson Richard P.
Publication year - 1992
Publication title -
development, growth and differentiation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 66
eISSN - 1440-169X
pISSN - 0012-1592
DOI - 10.1111/j.1440-169x.1992.00051.x
Subject(s) - xenopus , tadpole (physics) , biology , microbiology and biotechnology , anatomy , cell , embryo , biochemistry , physics , particle physics , gene
The surface of the Xenopus tadpole contains three specialized, transient cell types; the ciliated, hatching gland, and cement gland cells. To distinguish whether the appearance of these cell types on the surface is due to induction of surface cells or due to migration of deep ectodermal cells into the surface, we transplanted labelled surface or deep cells to unlabelled hosts at early to mid‐gastrulae. After raising the host to a tadpole (Stage 28), we examined the embryo's surface for ciliated, hatching gland, and cement gland cells, and observed which cells were labelled. We find that all ciliated cells move into the surface from the deep ectodermal layer along with other cells of unknown function. Hatching gland cells arise by induction of surface cells as do the majority of cement gland cells. A few deep cells give rise to cement gland cells. Therefore, migration of deep cells to the surface and localized induction of surface cells contribute to the final surface patterning of the Xenopus tadpole.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here