z-logo
Premium
Subcortical Rotation and Specification of the Dorsoventral Axis in Newt Eggs
Author(s) -
Fujisue Megumi,
Sakai Masao,
Yamanat Kiyotaka
Publication year - 1991
Publication title -
development, growth and differentiation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 66
eISSN - 1440-169X
pISSN - 0012-1592
DOI - 10.1111/j.1440-169x.1991.00341.x
Subject(s) - anatomy , xenopus , biology , polyspermy , dorsum , cortex (anatomy) , rotation (mathematics) , neuroscience , embryo , microbiology and biotechnology , geometry , oocyte , biochemistry , mathematics , gene
The specification of the dorsoventral axis in naturally polyspermic eggs of the Japanese newt, Cynops pyrrhogaster , was first examined by studies on the spatial relationship between the dorsal midline of the future body plan and the sperm entrance points (SEPs 1 ). On local insemination, the dorsal blastopore lip was usually found to be formed opposite the SEPs, as in anuran monospermic eggs. Next the movements of the subcortical layer and the cortex were analyzed. “Subcortical rotation” was observed, similar to that of Xenopus laevis eggs with respect to its timing and extent, and its direction was shown to predict the embryonic axis of the eggs. Thus, the dorsoventral axis was concluded to be determined by essentially the same mechanism in the newt as in Xenopus . Owing to their large size and long first cell cycle, newt eggs appear to be suitable material for study of subcortical rotation, but their behavior is unique in that subcortical rotation occurs in only the vegetal hemisphere so that the subcortical layer stretches in the future dorsal side. Studies on the movement of Nile blue spots suggested that the cytoplasm under the cortex in newt eggs consists of two layers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here