Premium
AGE‐RELATED SYNAPTIC CHANGES IN THE CA1 STRATUM RADIATUM AND SPATIAL LEARNING IMPAIRMENT IN RATS
Author(s) -
Long LiHong,
Liu RuiLi,
Wang Fang,
Liu Jue,
Hu ZhuangLi,
Xie Na,
Jin You,
Fu Hui,
Chen JianGuo
Publication year - 2009
Publication title -
clinical and experimental pharmacology and physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.752
H-Index - 103
eISSN - 1440-1681
pISSN - 0305-1870
DOI - 10.1111/j.1440-1681.2008.05132.x
Subject(s) - hippocampus , morris water navigation task , synaptic plasticity , neuroscience , endocrinology , medicine , biology , chemistry , psychology , receptor
SUMMARY1 Age‐related impairments in hippocampus‐dependent spatial learning and memory are not associated with a loss of neurons, but may be related to synaptic changes. In the present study, we analysed the behavioural performance of adult, middle‐aged and old Wistar rats using the Morris water maze, as well as the structure of synapses and the expression of autophosphorylated Ca 2+ /calmodulin‐dependent protein kinase II at threonine 286 (pThr286‐αCaMKII), a key post‐synaptic protein in the CA1 stratum radiatum, in the same rats. 2 Old Wistar rats showed significant cognitive deficits. Synaptic density, the area of post‐synaptic densities and the total number of synapses in the CA1 stratum radiatum of old rats were significantly decreased compared with adult rats. The decrease in autophosphorylated pThr286‐αCaMKII was age dependent. 3 These findings reveal that age‐related impairments in learning and memory are associated with synaptic atrophy. The decreased expression of pThr286‐CaMKII may result in reduced synaptic function with ageing.