Premium
FUNCTIONAL DIVERSITY OF MAMMALIAN TYPE 2C PROTEIN PHOSPHATASE ISOFORMS: NEW TALES FROM AN OLD FAMILY
Author(s) -
Lu Gang,
Wang Yibin
Publication year - 2008
Publication title -
clinical and experimental pharmacology and physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.752
H-Index - 103
eISSN - 1440-1681
pISSN - 0305-1870
DOI - 10.1111/j.1440-1681.2007.04843.x
Subject(s) - gene isoform , diversity (politics) , functional diversity , biology , functional divergence , phosphatase , genetics , evolutionary biology , gene family , sociology , phosphorylation , gene , genome , anthropology , ecology
SUMMARY1 The Type 2C protein phosphatases (PP2C) represent a highly conserved gene family in the mammalian genome. Recent studies have revealed that PP2C isoforms possess unique patterns of tissue and subcellular distribution associated with diverse functionalities. 2 The functional importance of PP2C isoforms has been shown in a plethora of signalling networks controlling cell differentiation, proliferation, growth, survival and metabolism. However, little is known about the regulatory mechanisms of PP2C at the molecular level. It is uncertain how PP2C isoforms are recruited, activated and inactivated during signalling transduction processes. 3 In the present paper, an overview of the critical functions of individual PP2C isoforms in regulating cellular signalling events will be provided, along with our perspectives on the challenging issues to be addressed. It is clear that a better understanding of the complex biological effects elicited by specific signalling pathways involving PP2C isoforms has great potential for developing novel therapies for a variety of human diseases, including cancer, diabetes and neural disorders, as well as cardiovascular diseases.