Premium
SYSTEMIC DELIVERY OF ADULT STEM CELLS IMPROVES CARDIAC FUNCTION IN SPONTANEOUSLY HYPERTENSIVE RATS
Author(s) -
De Macedo Braga Luisa MG,
Rosa Kaleizu,
Rodrigues Bruno,
Malfitano Christiane,
Camassola Melissa,
Chagastelles Pedro,
Lacchini Silvia,
Fiorino Patricia,
De Angelis Kátia,
D’Agord Schaan Beatriz,
Irigoyen Maria C,
Beyer Nardi Nance
Publication year - 2008
Publication title -
clinical and experimental pharmacology and physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.752
H-Index - 103
eISSN - 1440-1681
pISSN - 0305-1870
DOI - 10.1111/j.1440-1681.2007.04820.x
Subject(s) - medicine , ejection fraction , ventricle , myocardial infarction , cardiac function curve , cardiology , mesenchymal stem cell , bone marrow , blood pressure , stem cell , heart failure , pathology , biology , genetics
SUMMARY1 Heart regeneration after myocardial infarction (MI) can occur after cell therapy, but the mechanisms, cell types and delivery methods responsible for this improvement are still under investigation. In the present study, we evaluated the impact of systemic delivery of bone marrow cells (BMC) and cultivated mesenchymal stem cells (MSC) on cardiac morphology, function and mortality in spontaneously hypertensive rats (SHR) submitted to coronary occlusion. 2 Female syngeneic adult SHR, submitted or not (control group; C) to MI, were treated with intravenous injection of MSC (MI + MSC) or BMC (MI + BM) from male rats and evaluated after 1, 15 and 30 days by echocardiography. Systolic blood pressure (SBP), functional capacity, histology, mortality rate and polymerase chain reaction for the Y chromosome were also analysed. 3 Myocardial infarction induced a decrease in SBP and BMC, but not MSC, prevented this decrease. An improvement in functional capacity and ejection fraction (38 ± 4, 39 ± 3 and 58 ± 2% for MI, MI + MSC and MI + BM, respectively; P < 0.05), as well as a reduction of the left ventricle infarcted area, were observed in rats from the MI + BM group compared with the other three groups. Treated animals had a significantly reduced lesion tissue score. The mortality rate in the C, MI + BM, MI + MSC and MI groups was 0, 0, 16.7 and 44.4%, respectively ( P < 0.05 for the MI + MSC and MI groups compared with the C and MI + BM groups). 4 The results of the present study suggest that systemic administration of BMC can improve left ventricular function, functional capacity and, consequently, reduce mortality in an animal model of MI associated with hypertension. We speculate that the cells transiently home to the myocardium, releasing paracrine factors that recruit host cells to repair the lesion.