Premium
WHAT OF RESEARCH
Author(s) -
Farquhar Bronwyn
Publication year - 2010
Publication title -
australian occupational therapy journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.595
H-Index - 44
eISSN - 1440-1630
pISSN - 0045-0766
DOI - 10.1111/j.1440-1630.1980.tb01125.x
Subject(s) - citation , library science , psychology , medicine , computer science
Vesicle transport and membrane trafficking in eukaryotic cells is highly regulated and depends on the function of more than 60 Rab GTPases, which play pivotal roles in these processes. Rabs control vesicle budding, membrane localization, and recruitment of effectors to direct cargo to their correct destination. It is for this reason that several pathogenic bacteria manipulate these proteins to establish a replicative niche for themselves. The focus of our laboratory is to elucidate how intracellular bacterial pathogens manipulate Rab function to promote their virulence and to uncover fundamental principles of membrane traffic. To accomplish this, we will utilize the intracellular pathogen Legionella pneumophila as a model. Legionella pneumophila is responsible for a severe pneumonia called Legionnaire?s disease and cause infection via inhalation of contaminated aerosols. Following phagocytosis by host alveolar macrophages, L. pneumophila avoids fusion with endo-lysosomes and instead hijacks the host transport machinery to establish an endoplasmic reticulum (ER)-derived Legionella containing vacuole (LCV) that does not acidify and facilitates bacterial replication. Essential to Legionella?s pathogenicity is a type IV secretion system called the Dot/Icm system that functions to translocate bacterial effector proteins directly into infected host cells. Dot/Icm secreted effectors usurp many host cell processes and are essential for the establishment of the LCV.