z-logo
Premium
Improved plant regeneration and in vitro somatic embryogenesis of St Augustinegrass [ Stenotaphrum secundatum (Walt.) Kuntze]
Author(s) -
Li R.,
Bruneau A. H.,
Qu R.
Publication year - 2006
Publication title -
plant breeding
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.583
H-Index - 71
eISSN - 1439-0523
pISSN - 0179-9541
DOI - 10.1111/j.1439-0523.2006.01193.x
Subject(s) - callus , subculture (biology) , somatic embryogenesis , biology , somaclonal variation , explant culture , regeneration (biology) , botany , micropropagation , tissue culture , murashige and skoog medium , microbiology and biotechnology , in vitro , biochemistry
St Augustinegrass [ Stenotaphrum secundatum (Walt.) Kuntze] is an important warm season turf and pasture grass. In vitro tissue culture of St Augustinegrass could serve as an important mean for its improvement through genetic transformation as well as induced somaclonal variation. To optimize tissue culture conditions for plant regeneration of St Augustinegrass, tissue culture responses of 11 explant tissues and four callus induction/subculture media have been examined. Embryogenic calli with regeneration potential were observed on cultures of early immature embryo [3 days after pollination (DAP)], immature embryo (7–14 DAP), and shoot base of young seedlings. The addition of benzyladenine (BA) in the callus induction/subculture medium enhances callus regeneration ability and does not harm callus induction for immature embryos. The best response came from 7 to 14 DAP immature embryo on MS medium containing 1 mg/l 2,4‐dichlorophenoxyacetic acid and 0.5 mg/l BA. The callus induction and regeneration rates were 97.7% and 47.6% respectively. However, BA supplement reduced callus formation and failed to enhance regeneration for young leaf bases. Scanning electron microscopy revealed that plant regeneration of St Augustinegrass is via somatic embryogenesis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here