Premium
Influence of high molecular weight glutenin subunit substitution on rheological behaviour and bread‐baking quality of near‐isogenic lines developed from Chinese wheats
Author(s) -
Deng Z.Y.,
Tian J.C.,
Sun G.X.
Publication year - 2005
Publication title -
plant breeding
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.583
H-Index - 71
eISSN - 1439-0523
pISSN - 0179-9541
DOI - 10.1111/j.1439-0523.2005.01158.x
Subject(s) - glutenin , farinograph , gluten , food science , bread making , wheat flour , rheology , biology , protein subunit , chemistry , materials science , biochemistry , gene , composite material
Three near‐isogenic lines (NILs) of wheat involving Glu‐B1 and Glu‐D1 alleles were used to study the genetic contribution of high molecular weight glutenin subunits (HMW‐GS) to gluten strength. The HMW‐GS composition of each NILs was determined by SDS‐PAGE. No significant differences were found in grain protein contents among the NILs. Gluten strength and dough‐mixing properties were measured by the Farinograph, the Extensograph, and SDS‐sedimentation (SDS‐SE). Results indicated that line 2, containing the Glu‐1B 14 + 15 and Glu‐1D 5 + 10 combination of subunits, had higher values for flour quality, dough rheological parameters, and bread‐baking quality when compared with lines 8 and 13. Line 8, containing Glu‐1B 7 + 9 and Glu‐1D 5 + 10, was better than line 13 with the Glu‐1B 14 + 15 and Glu‐1D 10 combination. Some major parameters appeared significantly different. The presence of Glu‐1B 14 + 15 was associated with higher dough strength based on SDS‐SE volume and several rheological parameters when compared with Glu‐1B 7 + 9. Lines with subunit 10 at Glu‐D1 performed significantly worse than those with 5 + 10 in gluten index, SDS‐SE volume, Farinograph stability time, Extensograph area and bread‐baking quality.