Premium
Larval dispersal and vertical migration behaviour – a simulation study for short dispersal times
Author(s) -
Sundelöf Andreas,
Jonsson Per R.
Publication year - 2012
Publication title -
marine ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.668
H-Index - 58
eISSN - 1439-0485
pISSN - 0173-9565
DOI - 10.1111/j.1439-0485.2011.00485.x
Subject(s) - biological dispersal , pelagic zone , lagrangian , larva , ecology , flow (mathematics) , ocean current , diel vertical migration , environmental science , oceanography , biology , geology , population , mechanics , mathematics , physics , demography , sociology , mathematical physics
Current speed often varies with depth, so vertical movements of larvae are expected to have profound effects on dispersal velocity and therefore dispersal potential. Systematic behaviours are expected to have strong effects on dispersal. However, reliable information on the presence of vertical migrations in larvae is scarce, but the few well investigated empirical examples justify a detailed simulation study and an analysis of potential effects. We present a spatially explicit 3D hydrodynamic model that incorporates biological information in the form of active particles advected in a Lagrangian fashion. The set‐up is designed to analyze the sensitivity of dispersal distances to variation in vertical behaviour of larvae. We simulated short (4 days) pelagic larval durations (PLDs) to determine whether behaviour might be important over short dispersal periods. We found that sinusoidal behaviours (slow vertical migration) in or out of phase with tides did not significantly change the dispersal patterns compared to those of larvae that remained at the surface. By contrast, a quadratic pattern of behaviour resulting in rapid vertical migration, in or out of phase with tides, had dramatic effects on both distance and direction of dispersal. The resulting dispersal kernels were found to be multimodal due to the interaction between tidal and meteorological components in flow. Incorporating biological information on larval migrations in Lagrangian simulation of dispersal will be important in estimates of connectivity and forecasting marine reserve networks.