Premium
Cloning and in silico Mapping of Resistance Gene Analogues Isolated from Rice Lines Containing Known Genes for Blast Resistance
Author(s) -
Kumar S. P.,
Dalal V.,
Singh N. K.,
Sharma T. R.
Publication year - 2007
Publication title -
journal of phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 60
eISSN - 1439-0434
pISSN - 0931-1785
DOI - 10.1111/j.1439-0434.2007.01227.x
Subject(s) - biology , genetics , genbank , gene , in silico , homology (biology) , phylogenetic tree , cloning (programming) , magnaporthe grisea , open reading frame , locus (genetics) , oryza sativa , peptide sequence , computer science , programming language
Abstract We amplified resistance gene analogues (RGAs) from the genomic DNA of 10 rice lines having varying degree of resistance to Magnaporthe grisea by using degenerate primers and various RGAs were mapped in silico on different rice chromosomes. The amplified products were grouped into 3–8 restriction fragment length polymorphic classes by using Mbo 1 and Alu 1 restriction enzymes. Of 98 RGAs obtained in this study, 65 RGA clones showed more than 95% homology with various RGAs sequences present in the GenBank. Phylogenetic analysis of these RGAs formed 11 groups. Using sequence homology approach, RGAs isolated in this study were physically mapped on 23 loci on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 and 12. Twenty RGAs were mapped near to the chromosomal regions containing known genes/QTLs for rice blast, bacterial leaf blight and sheath blight resistance. Thirty‐nine RGA sequences also contained open reading frame representing signature of potential disease resistance genes.