Premium
Effects of breed and dietary nutrient density on the growth performance, blood metabolite, and genes expression of target of rapamycin (TOR) signalling pathway of female broiler chickens
Author(s) -
Wang X.q.,
Jiang W.,
Tan H.z.,
Zhang D.x.,
Zhang H.j.,
Wei S.,
Yan H.c.
Publication year - 2013
Publication title -
journal of animal physiology and animal nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.651
H-Index - 56
eISSN - 1439-0396
pISSN - 0931-2439
DOI - 10.1111/j.1439-0396.2012.01320.x
Subject(s) - broiler , breed , metabolite , biology , gene , nutrient , hedgehog signaling pathway , gene expression , signalling , zoology , endocrinology , medicine , genetics , microbiology and biotechnology , ecology
Summary This study was conducted to compare the effects of exchanged diets with identical energy level on characteristics of slow‐growing (WENs Yellow‐Feathered Chicken, WYFC) and fast‐growing (White Recessive Rock Chicken, WRRC) female chickens. A total of 1450 WYFC and 1150 WRRC 1‐day‐old female hatchlings were used. A high‐nutrient‐density (HND) diet and a low‐nutrient‐density (LND) diet were formulated for three phases. A completely randomized experimental design with a 2 × 2 factorial arrangement (diet and breed), each with five replicates of 145 and 115 birds, was applied. The results showed that WRRC had a higher body weight (BW), average daily feed intake and average daily gain than WYFC throughout the experiment (p < 0.05). WYFC that were provided with HND groups had a higher BW only in the starter and grower phases, whereas WRRC had a higher BW in the HND group than in LND groups throughout the experiment. The feed:gain ratio and protein efficiency ratio (PER) were better for WRRC in the starter and grower phases; however, these ratios were better for WYFC in the finisher period. The LND groups had a higher PER throughout the experiment for both breeds (p < 0.05). The breast and leg muscle weights were higher for WRRC compared with WYFC during the grower and finisher phases (p < 0.05). WRRC had a lower liver index but higher serum UA and alkaline phosphatase (ALP) concentrations than WYFC (p < 0.05). No diet effect was observed on organ indices, muscle yields or blood responses. The gene expressions of Rheb, TOR, S6K1 and 4E‐BP1 in gastrocnemius muscle were the highest in the WYFC‐LND groups at 63 and 105 days (p < 0.05). These findings suggested that different genotypes respond differently to changes in dietary nutrient density and that lower‐nutrient‐density diets are optimal for the long‐term housing of broiler chickens.