Premium
Increasing dietary crude protein does not increase the methionine requirement in kittens * †‡
Author(s) -
Strieker M. J.,
Morris J. G.,
Kass P. H.,
Rogers Q. R.
Publication year - 2007
Publication title -
journal of animal physiology and animal nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.651
H-Index - 56
eISSN - 1439-0396
pISSN - 0931-2439
DOI - 10.1111/j.1439-0396.2007.00677.x
Subject(s) - methionine , latin square , zoology , nitrogen balance , cystine , chemistry , endocrinology , limiting , medicine , body weight , biology , amino acid , nitrogen , food science , biochemistry , cysteine , mechanical engineering , rumen , organic chemistry , fermentation , engineering , enzyme
Summary The objective of this study was to determine if the methionine (met) requirement of kittens is correlated with the concentration of dietary crude protein (CP). The study used 48 male kittens in two replications of six 4 × 4 Latin squares, each representing one concentration of met (1.5, 2.5, 3.5, 4.5, 6.0 or 9.0 g/kg diet) with four CP concentrations (150, 200, 300 and 500 g/kg diet) in 2‐week periods. Cystine was present in the lowest CP diet at 5.3 g/kg diet and increased as dietary CP increased. Body weight gain, food intake, nitrogen balance and plasma amino acids, glucose, insulin, cortisol, somatomedin C, T 3 and T 4 concentrations on day 12 were measured. From breakpoint analysis of the nitrogen retention curves, the met requirement of kittens was found to be 3.1, 3.8, 3.1 and 2.4 g met/kg for the 150, 200, 300 and 500 g CP/kg diets, respectively. When met was limiting (1.5 or 2.5 g/kg diet), increasing dietary CP did not decrease, but rather increased food intake, body weight gain and nitrogen retention. Plasma met concentrations increased as dietary met increased and at 2.5–3.5 g met/kg diet were not different among kittens fed the various CP diets. Total plasma T 3 and T 4 increased significantly as dietary CP increased in kittens given the 2.5 and 4.5 g met/kg diets. Results indicate that food intake and possibly altered hormonal secretion play a role in this growth response. In conclusion, the met requirement of growing kittens, unlike omnivores and herbivores studied, was not positively correlated with the concentration of dietary CP.