Premium
Physiological Responses and Dry Matter Partitioning of Summer Mungbean ( Vigna radiata L.) Genotypes Subjected to Drought Conditions
Author(s) -
Kumar A.,
Sharma K. D.
Publication year - 2009
Publication title -
journal of agronomy and crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 74
eISSN - 1439-037X
pISSN - 0931-2250
DOI - 10.1111/j.1439-037x.2009.00373.x
Subject(s) - drought tolerance , dry matter , agronomy , irrigation , biology , vigna , water content , crop , radiata , tropics , subtropics , geotechnical engineering , fishery , engineering
Abstract Drought is the most important limitation to summer mungbean production in the tropics and subtropics dependent on usually insufficient summer rainfall. As increased irrigation is not a viable answer to the problem, an economically and environmentally desirable solution is new varieties with drought tolerance. However, there is little genotypic information on drought tolerance in summer mungbean. The objectives of this study were to assess the genotypic differences in physiological traits and dry matter partitioning in mungbean and to measure the association of these traits with crop performance under drought conditions. Six mungbean genotypes were tested in drought micro plots at CCS Haryana Agricultural University, Hisar, India. A split plot design was used; two irrigation treatments (watered and droughted) in the main plots and six mungbean genotypes in the subplots with three replicate micro plots. Drought decreased leaf water status, rates of photosynthesis (P n ) and altered dry matter partitioning in different plant parts. Our results showed that P n did not limit yield, but it was partitioning of dry matter governed by leaf water content (RWC) which influenced the final yield. RWC was positively correlated to the number of pods per plant and seed yield, genotypes maintaining high RWC produced higher seed yield. Therefore, the drought tolerance of summer mungbean was related to the maintenance of high RWC, which can be used as a physiological marker to identify and develop superior genotypes suited to drought‐prone environments.