z-logo
Premium
Irrigation Level Affects Isoflavone Concentrations of Early Maturing Soya Bean Cultivars
Author(s) -
AlTawaha A. M.,
Seguin P.,
Smith D. L.,
Bonnell R. B.
Publication year - 2007
Publication title -
journal of agronomy and crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 74
eISSN - 1439-037X
pISSN - 0931-2250
DOI - 10.1111/j.1439-037x.2007.00263.x
Subject(s) - irrigation , cultivar , agronomy , yield (engineering) , isoflavones , chemistry , field experiment , biology , biochemistry , materials science , metallurgy
Field experiments were conducted in 2003/2004 in Québec to determine the effects of irrigation levels (none, low and high) and cultivars (AC Orford, AC Proteina and Golden) on soya bean [ Glycine max (L.) Merr.] isoflavone concentrations and yields. Seed yield, yield components, and oil and crude protein (CP) concentrations were concurrently determined. Response to irrigation was greater in 2003, which was substantially warmer and drier than in 2004. In both years, most responses were observed with the lower of the two irrigation levels evaluated, which increased total isoflavones concentration by an average of 45 % compared with a non‐irrigated control. Cultivars, however, responded differently to irrigation. In 2003, response of AC Proteina was greater than that of AC Orford, while Golden did not respond. In 2004, some responses were observed with AC Proteina and Golden but none with AC Orford. Overall, in both years, AC Proteina had the greatest isoflavone concentrations and AC Orford the lowest. Responses of seed yield and yield components depended on the year and were also greater in 2003. Both irrigation treatments generally increased seed yield and yield components compared with a non‐irrigated control; the response was greater with the higher irrigation level. Irrigation had no effect on oil and CP concentrations. Finally, isoflavone yield response to irrigation was again greater in 2003, and depended on the cultivar. Results thus demonstrate that specific soil moisture levels will maximize soya bean isoflavone concentrations, excess irrigation sometimes negating any potential benefits.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here