z-logo
Premium
Solute Accumulation as a Cause for Quality Losses in Sugar Beet Submitted to Continuous and Temporary Drought Stress
Author(s) -
Bloch D.,
Hoffmann C. M.,
Märländer B.
Publication year - 2006
Publication title -
journal of agronomy and crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 74
eISSN - 1439-037X
pISSN - 0931-2250
DOI - 10.1111/j.1439-037x.2006.00185.x
Subject(s) - taproot , sugar beet , sucrose , drought tolerance , agronomy , sugar , dry matter , chemistry , plant physiology , nitrate , biology , horticulture , botany , food science , organic chemistry
Adaptation to low water availability in sugar beet includes the accumulation of solutes relevant for the technical quality of the beet. Two sugar beet genotypes were grown in pot experiments under drought stress of different severity to study effects on taproot composition and concentration of solutes relevant for technical quality, reversibility of drought effects after re‐watering and genotypic differences in drought response. Differences in stress sensitivity between the genotypes were not observed as reductions in taproot and leaf dry weight and white sugar yield were the same. Increasing dry matter concentration with decreasing water supply could, in part, be attributed to an increase in the concentration of cell wall components. The major solutes in the taproot were sucrose, potassium, amino N (the sum of amino acids) and betaine. Sucrose concentration decreased considerably under drought, indicating limited availability of assimilates. In contrast, all further solutes increased in concentration with increasing severity of stress. However, the response of individual solutes varied largely. Changes in amino N and nitrate were most pronounced and probably reflect accumulation of non‐utilized metabolites under limited growth. The drought‐induced accumulation of taproot solutes implicates a considerable decrease in the technical quality of the beet. It was only in part reversible by re‐watering. Genotypic variability for solute accumulation under water deficiency was observed but was not linked to drought tolerance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here