Premium
Putrescine Increases Floral Retention, Pod Set and Seed Yield in Cold Stressed Chickpea
Author(s) -
Nayyar H.
Publication year - 2005
Publication title -
journal of agronomy and crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 74
eISSN - 1439-037X
pISSN - 0931-2250
DOI - 10.1111/j.1439-037x.2005.00158.x
Subject(s) - point of delivery , spermine , putrescine , abscission , biology , horticulture , spermidine , respiration , fruit set , agronomy , botany , pollination , pollen , biochemistry , enzyme
Abstract Chickpea ( Cicer arietinum L.) is sensitive to cold stress (<8 °C) at its reproductive phase that results in flower abortion, poor pod set and thus reduced yield. Early maturing genotypes are especially more sensitive. In this crop, the metabolic causes underlying cold injury that are imperative to induce cold tolerance are not known. In the present study, the endogenous levels of putrescine (diamine), spermidine (triamine) and spermine (tetramine) were examined in early maturing chickpea genotype ICCV 96029, subjected to chilling temperatures of field (12–15/4–6 °C; average maximum and minimum temperature respectively), at flowering or early podding stage. These were compared with controls growing in warmer conditions (28/12 °C) of the glasshouse. The polyamine levels increased six to nine times because of stress. Relatively, putrescine (PUT) elevation was the highest but short‐lived and its decrease appeared to match with the onset of flower and pod abscission in stressed plants. Compared with controls, chilling injury, observed as electrolyte leakage (EL), increased by 60 % while cellular respiration declined by 68 % in stressed plants. Exogenous application of 10 m m PUT to stressed plants reduced the EL by 29 % and elevated the cellular respiration by 40 %. PUT application at flowering stage resulted in increase of 30, 31, 23 and 25 % in floral retention, pod set, pod retention and fertile pods respectively. At the early podding stage, PUT treatment increased the seed yield per plant, seed number per 100 pods and individual seed weight by 50, 17 and 19 % respectively. The number of single‐seeded pods per plant increased from 4.4 in stressed plants to 12.2 in PUT‐treated plants while the number of double‐seeded pods reduced from 6.2 to 4.3. The number of infertile pods declined from 8.2 in stressed plants to 3.1 in PUT‐treated plants.