Premium
Drought Stress Effects on Seed Yield, Yield Attributes, Growth, Cell Membrane Stability and Gas Exchange of Synthesized Brassica napus L.
Author(s) -
Hashem Abul,
Amin Majumdar M. N.,
Hamid Abdul,
Hossain M. M.
Publication year - 1998
Publication title -
journal of agronomy and crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 74
eISSN - 1439-037X
pISSN - 0931-2250
DOI - 10.1111/j.1439-037x.1998.tb00382.x
Subject(s) - photosynthesis , brassica , yield (engineering) , biology , agronomy , stomatal conductance , vegetative reproduction , horticulture , dry matter , botany , materials science , metallurgy
Drought stress effects on leaf gas exchange, cell membrane stability, seed yield and yield attributes of synthesized Brassica napus L. cv. Bangla kale and Bangla cabbage were compared. Drought stress treatments were imposed at early vegetative, late vegetative and flowering stages by withholding watering. Bangla cabbage produced greater pods/plant, larger seed size, greater total dry matter/plant, seeds/pot, and 17% greater yield than Bangla kale. The seed yield in plants stressed at early vegetative, late vegetative and flowering stages were 59, 74, 88% lower respectively, than watered plants. Drought stress reduced leaf photosynthesis by 67 to 97%. Bangla cabbage had 68% greater photosynthesis and 56% greater stomatal conductance than Bangla kale under stress at flowering stage. Leaf temperature was 1 to 2°C higher in stressed plants than watered plants. The cell membrane stability (CMS) increased up to 83% at flowering stage under stress compared to 21% under watered conditions. Although Bangla cabbage had high seed yield, yield attributes and photosynthesis under stressed conditions at flowering stage, its CMS values were lower than those of Bangla kale.