z-logo
Premium
Ontogenic Changes in Growth and Assimilate Distribution as Influenced by N Supply in Rapeseed‐mustard
Author(s) -
Patil B. N.,
Lakkineni K. C.,
Bhargava S. C.
Publication year - 1997
Publication title -
journal of agronomy and crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 74
eISSN - 1439-037X
pISSN - 0931-2250
DOI - 10.1111/j.1439-037x.1997.tb00346.x
Subject(s) - pusa , rapeseed , brassica , dry matter , biology , human fertilization , agronomy , horticulture , field experiment , nitrogen , ontogeny , main stem , crop , cultivar , chemistry , organic chemistry , genetics
Brassica juncea , cv. Pusa Bold, and Brassica campestris , cv. Pusa Kalyani, were raised under field conditions with varying levels of N fertilization, i.e. 0, 40, 80 and 120 kg N ha −1 . Changes in dry matter accumulation in various plant parts as influenced by N supply were measured throughout the crop ontogeny. N supply up to 120 kg had an increasing effect on the growth of leaves, stem and pods during the entire period till maturity. Analysis on the assimilate distribution pattern revealed that 84–87% of the total was accumulated during the post‐flowering phase. Dry matter partitioning profile during the ontogeny indicated that about 72–83 % of the total DM was accumulated in the leaves, while 17–28 % in the stem, in the preflowering phase. This trend was found nearly opposite during the postflowering phase. At maturity, however, stem and pods accounted for nearly equal amounts of dry matter accumulation. Among the genotypes, Pusa Bold recorded significantly higher DM accumulation and seed yield over Pusa Kalyani which, on the other hand, exhibited a better assimilate‐partioning ability than the former. Nitrogen levels had a favourable effect on LAI, LAD and CGR in both genotypes. Highly significant correlations were obtained between seed yield vs. LAI, LAD and CGR. N fertilization up to 120 kg ha −1 was found beneficial in enhancing growth and yield of rapeseed‐mustard.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here