Premium
The Influence of Different Nitrogen Levels and Seeding Rates on the Dry Matter Production and Nitrogen Uptake of Spelt (Triticum spelta L.) and Wheat (Triticum aestivum L.) under Field Conditions
Author(s) -
Rüegger A.,
Winzeler M.,
Winzeler H.
Publication year - 1993
Publication title -
journal of agronomy and crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 74
eISSN - 1439-037X
pISSN - 0931-2250
DOI - 10.1111/j.1439-037x.1993.tb00121.x
Subject(s) - anthesis , nitrogen , agronomy , dry matter , seeding , photosynthesis , field experiment , biology , chemistry , cultivar , botany , organic chemistry
Dry matter production of two different spelt ( Oberkulmer, Hercule ) and wheat varieties ( Arina, Iena ) were investigated at two different seeding rates (S1 = 200 grains/m 2 ; S2 = 400 grains/m 2 ) and two nitrogen levels (N1 = 80 kg N/ha; N2 = 110 kg N/ha). The plot experiments were carried out at two contrasting locations (Muri: altitude 459 m asl); Oberwallestalden: altitude 1011 m asl) over three years (1988–1990). In addition nitrogen uptake and the photosynthetic rate of flag leaves was measured. Neither growth regulators nor fungicides were applied. The average grain yield of spelt was 25 % lower than that of wheat (32 % at Muri, 18 % at Oberwallestalden). At the reduced seeding rate (S1) grain weight and grain number per ear was increased by 33 % and 31 %, respectively as compared to the normal seeding rate (S2). The increase of the grain weight and the grain number per ear was larger for the two varieties of spelt (47 % and 42 %, respectively) than for the wheat varieties (23 % and 22 %, respectively). The photosynthetic rate of the flag leaf of spelt and wheat was not significantly different, at the two growth stages measured (anthesis, anthesis + 23 days). Nitrogen yield in the above ground biomass (g N/m 2 ) was not significantly different between spelt and wheat, neither at the beginning of stem elongation, nor at anthesis. At anthesis the nitrogen yield at the reduced nitrogen level (N1) was 16 % and 13 % lower than at the higher level (N2) for spelt and wheat respectively. A higher nitrogen efficiency of spelt under low input conditions was not apparent. Therefore it was concluded that under low input conditions, spelt is not more efficient in dry matter production than wheat. By comparing the “husked” yield of spelt (grains + glumes; representing the trade form) with the grain yield of wheat, spelt is higher yielding than wheat but only at marginal areas of cereal production.