z-logo
Premium
Nitrogen Distribution and Dry Matter Accumulation in Oilseed Rape ( Brassica napus L.) as Influenced by N Nutrition
Author(s) -
Ogunlela V. B.,
Kullmann A.,
Geisler G.
Publication year - 1990
Publication title -
journal of agronomy and crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 74
eISSN - 1439-037X
pISSN - 0931-2250
DOI - 10.1111/j.1439-037x.1990.tb00822.x
Subject(s) - dry matter , dry weight , brassica , biology , agronomy , main stem , nitrogen , stem and leaf display , point of delivery , horticulture , chemistry , organic chemistry
A greenhouse experiment was conducted to study N distribution and dry matter accumulation in oilseed rape ( Brassica napus L. cv. Callypso ) in relation to N supply. Three levels of N supply (30, 100 or 170 ppm N) were tested as treatments. Stem and leaf dry weights increased at higher N fertility up to 170 ppm N but root dry weight did not respond to N. Dry matter yield during the vegetative phase was seriously depressed by N deficiency. Most of the plant dry matter was accumulated in the lower segments of the stem and roots. Dry weights of stem and axillary branches increased significantly as N supply increased up to 100 ppm N. Although hull dry weight increased with N supply up to 100 ppm N, seed dry weight did not respond to N. High root N concentration was maintained at 100 or 170 ppm N; but declined as plants advanced in age. N content of leaf and stem also declined with time. Leaf growth was particularly responsive to N fertility and N was mobilised from the older to the younger leaves over time. Nitrogen content of hulls and seeds increased significantly with N supply but N was translocated from the vegetative into the generative organs or from older into younger tissues during pod development. There is need for proper N fertility management in order to achieve successful rape production.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here