Premium
A Multivariate Analysis of Soybean Genotypes Grown Under Different Cropping Systems
Author(s) -
Sharma S. K.,
Mehta H.,
Ra. D.
Publication year - 1986
Publication title -
journal of agronomy and crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 74
eISSN - 1439-037X
pISSN - 0931-2250
DOI - 10.1111/j.1439-037x.1986.tb00011.x
Subject(s) - monoculture , intercropping , genetic diversity , biology , cropping , agronomy , cropping system , genetic divergence , crop , agriculture , population , ecology , demography , sociology
Nature and magnitude of genetic diversity was assessed using Mahalanobis's D 2 statistics and canonical analysis in 50 genotypes of soybean grown in monoculture and in association with maize. All the genotypes were grouped in 10 clusters in case of monoculture, while 8 clusters were formed for intercropping. Monoculture was more suitable environment for expressing the genetic diversity than intercrop. Some genotypes had consistently the similar clustering pattern in both the cropping systems, while others were affected by the cropping system in expressing the genetic diversity. This was confirmed by the canonical analysis. Days to flowering and maturity, seed yield/plant, plant height and 100‐seed weight were mainly responsible for genetic diversity in monoculture. Besides phenological traits, pod length and width, and seed yield/plant exerted marked influence on the genetic diversity of soybean genotypes grown in association with maize. Geographical distribution was not necessarily reflected by the genetic divergence, though some degree of relationship between geographic diversity and genetic diversity was evident under both the cropping systems. The performance of some genotypes varied from cropping system to another, while that of others remained unaffected. Breeding programmes to develop varieties suitable for sole crop, intercrop and both the cropping systems have been suggested.