Premium
Sex Differences in the Electrocommunication Signals of the Electric Fish Apteronotus bonapartii
Author(s) -
Ho Winnie W.,
Fernandes Cristina Cox,
AlvesGomes José A.,
Smith G. Troy
Publication year - 2010
Publication title -
ethology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.739
H-Index - 74
eISSN - 1439-0310
pISSN - 0179-1613
DOI - 10.1111/j.1439-0310.2010.01823.x
Subject(s) - sexual dimorphism , electric fish , biology , animal communication , electric organ , zoology , evolutionary biology , fish <actinopterygii> , genetics , torpedo , acetylcholine receptor , receptor , fishery
The South American weakly electric knifefish (Apteronotidae) produce highly diverse and readily quantifiable electrocommunication signals. The electric organ discharge frequency (EODf) and EOD modulations (chirps and gradual frequency rises) vary dramatically across sexes and species, presenting an ideal opportunity to examine the proximate and ultimate bases of sexually dimorphic behavior. We complemented previous studies on the sexual dimorphism of apteronotid communication signals by investigating electric signal features and their hormonal correlates in Apteronotus bonapartii , a species which exhibits strong sexual dimorphism in snout morphology. Electrocommunication signals were evoked and recorded using a playback paradigm and were analyzed for signal features including EOD frequency and the structure of EOD modulations. To investigate the androgenic correlates of sexually dimorphic EOD signals, we measured plasma concentrations of testosterone and 11‐ketotestosterone. A. bonapartii responded robustly to stimulus playbacks. EODf was sexually monomorphic, and males and females produced chirps with similar durations and amounts of frequency modulation. However, males were more likely than females to produce chirps with multiple frequency peaks. Sexual dimorphism in apteronotid electrocommunication signals appears to be highly evolutionarily labile. Extensive interspecific variation in the magnitude and direction of sex differences in EODf and in different aspects of chirp structure suggests that chirp signals may be an important locus of evolutionary change within the clade. The weakly electric fish represent a rich source of data for understanding the selective pressures that shape, and the neuroendocrine mechanisms that underlie, diversity in the sexual dimorphism of behavior.