Premium
Behavioral Isolation Based on Visual Signals in a Sympatric Pair of Darter Species
Author(s) -
Williams Tory H.,
Mendelson Tamra C.
Publication year - 2010
Publication title -
ethology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.739
H-Index - 74
eISSN - 1439-0310
pISSN - 0179-1613
DOI - 10.1111/j.1439-0310.2010.01816.x
Subject(s) - sympatric speciation , etheostoma , biology , reproductive isolation , evolutionary biology , ecology , sexual selection , ecological speciation , zoology , population , fish <actinopterygii> , genetics , gene flow , demography , fishery , sociology , gene , genetic variation
Elaborate visual communication signals characterize many animal lineages. Often sex‐limited, these signals are generally assumed to result from sexual selection, and in many cases, their evolution is thought to play a central role in speciation. The co‐evolution of male visual signals and female preferences is hypothesized to result in behavioral isolation between divergent lineages; however, for many lineages characterized by elaborate visual signals, the importance of visual differences in behavioral isolation is not well established. Darters (fish genus Etheostoma ) are particularly appropriate for examining the role of visual signals in behavioral isolation. They comprise one of the most diverse groups of North American freshwater fish, and nearly every species is characterized by unique nuptial coloration. Multiple darter species co‐exist in sympatric populations, indicating that reproductive barriers are central to maintaining these extraordinarily diverse color patterns. This study demonstrates the presence of behavioral isolation between a pair of distinctly colored sympatric darter species, Etheostoma barrenense and Etheostoma zonale , through experimental observations using an artificial stream. In addition, a series of dichotomous mate‐choice trials indicate that females prefer conspecific males over heterospecifics based on visual differences alone. We therefore provide the first evidence that visual signals are a critical trait maintaining behavioral isolation in darters, a lineage of fishes with spectacular diversification in visual communication.