Premium
Persistence of Alarm‐Call Behaviour in the Absence of Predators: A Comparison Between Wild and Captive‐Born Meerkats ( Suricata Suricatta )
Author(s) -
Hollén Linda I.,
Manser Marta B.
Publication year - 2007
Publication title -
ethology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.739
H-Index - 74
eISSN - 1439-0310
pISSN - 0179-1613
DOI - 10.1111/j.1439-0310.2007.01409.x
Subject(s) - predation , alarm signal , predator , captivity , alarm , animal communication , olfactory cues , biology , ecology , zoology , olfaction , communication , psychology , composite material , materials science
Performing correct anti‐predator behaviour is crucial for prey to survive. But, are such abilities lost in species or populations living in predator‐free environments? How individuals respond to the loss of predators has been shown to depend on factors such as the degree to which anti‐predator behaviour relies on experience, the type of cues evoking the behaviour, the cost of expressing the behaviour and the number of generations under which relaxed selection has taken place. Here we investigated whether captive‐born populations of meerkats ( Suricata suricatta ) used the same repertoire of alarm calls previously documented in wild populations and whether captive animals, as wild ones, could recognize potential predators through olfactory cues. We found that all alarm calls that have been documented in the wild also occurred in captivity and were given in broadly similar contexts. Furthermore, without prior experience of odours from predators, captive meerkats seemed to distinguish between faeces of potential predators (carnivores) and non‐predators (herbivores). Despite slight structural differences, the alarm calls given in response to the faeces largely resembled those recorded in similar contexts in the wild. These results from captive populations suggest that direct, physical interaction with predators is not necessary for meerkats to perform correct anti‐predator behaviour in terms of alarm‐call usage and olfactory predator recognition. Such behaviour may have been retained in captivity because relatively little experience seems necessary for correct performance in the wild and/or because of the recency of relaxed selection on these populations.