z-logo
Premium
Sticky plant captures prey for symbiotic bug: is this digestive mutualism?
Author(s) -
Anderson B.,
Kawakita A.,
Tayasu I.
Publication year - 2012
Publication title -
plant biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.871
H-Index - 87
eISSN - 1438-8677
pISSN - 1435-8603
DOI - 10.1111/j.1438-8677.2012.00573.x
Subject(s) - biology , mutualism (biology) , predation , insect , symbiosis , digestive enzyme , botany , ecology , zoology , enzyme , bacteria , biochemistry , genetics , lipase
Many plants capture and kill insects but, until relatively recently, only carnivorous plants with digestive enzymes were known to gain directly from the nutrients of those insects. Recent studies show that some carnivorous plants lack digestive enzymes and have evolved digestive mutualisms with symbiotic insects that digest their prey for them. Rhododendron macrosepalum , a plant with sticky leaves that captures insects, has an association with symbiotic Mirid bugs that consume the insects captured. Here, we determine what the nature of the relationship is between Mirid and plant. We find that R. macrosepalum has no digestive enzymes of its own but that it does not seem to have the ability to absorb hemipteran faeces through its leaf cuticle. Naturally occurring levels of 15 N and 14 N were used to determine that R. macrosepalum gains no nitrogen through its association with the Mirid bugs and that it obtains all of its nitrogen from the soil. The Mirids, on the other hand, seem to obtain nitrogen from insects captured by the plant, as well as from plant tissues. The relationship between plant and Mirid is not a digestive mutualism but more likely an antagonistic relationship. This study adds to our understanding of how digestive mutualisms evolve and shows that insect capture alone, or in combination with a symbiotic insect relationship does not necessarily make a plant ‘carnivorous’.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here