Premium
Responses of Calcicole and Calcifuge Poaceae Species to Iron‐Limiting Conditions
Author(s) -
Gries D.,
Runge M.
Publication year - 1995
Publication title -
botanica acta
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.871
H-Index - 87
eISSN - 1438-8677
pISSN - 0932-8629
DOI - 10.1111/j.1438-8677.1995.tb00525.x
Subject(s) - poaceae , limiting , calcareous , soil water , calcareous soils , relative growth rate , botany , biology , growth rate , chemistry , agronomy , horticulture , ecology , mechanical engineering , geometry , mathematics , engineering
Six differently distributed Poaceae species were compared in order to identify morphological and/or physiological properties that ensure calcicole species but not calcifuge species a sufficient Fe supply on CaCO 3 rich soils. When grown at a range of FeEDTA supply from deficient to adequate, the calcicole species had higher Fe productivities and relative yields at low Fe supply than the calcifuges. Specific root surface and Fe uptake requirements were lower in calcicoles than in calcifuges. Root exudation of Fe‐mobilizing compounds was monitored in plants grown either with or without added FeEDTA in hydroponic culture. Under Fe deficiency, typically more than 80% of soluble root exudates of Poaceae are phytosiderophores (Marschner et al., 1989; Römheld, 1987). Maximum exudation rates of Fe mobilizing compounds were 6.6 to 11.5 μmol g −1 root dry wt 2 hr −1 in calcicoles and 0.48 to 1.64 in calcifuges. If Fe requirement is defined as mean Fe uptake rate required for 90 % of the maximal relative growth rate, the exudation rates of Fe mobilizing compounds were at least 11.7 to 31.9 times higher than Fe requirements in calcicoles and 0.38 to 5.36 times higher in calcifuges. Growth response to a precipitated versus a chelated Fe source was determined. The relative ability to grow with Fe(OH) 3 precipitate was correlated with the Fe mobilization rate of the species. The present results give evidence for the importance of Fe efficiency in wild plants. Calcicoles are able to live on calcareous soils partly because they produce larger amounts of Fe mobilizing compounds and have lower tissue Fe requirements than calcifuges.