Premium
The Biomechanics of Tree Fork Design
Author(s) -
Mattheck C.,
Vorberg U.
Publication year - 1991
Publication title -
botanica acta
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.871
H-Index - 87
eISSN - 1438-8677
pISSN - 0932-8629
DOI - 10.1111/j.1438-8677.1991.tb00248.x
Subject(s) - fork (system call) , tree (set theory) , tuning fork , structural engineering , stress (linguistics) , tension (geology) , computer science , compression (physics) , materials science , mathematics , engineering , physics , composite material , mathematical analysis , acoustics , linguistics , philosophy , vibration
Two biomechanically different types of tree fork are described: the “compression fork” where the two jointed stems are pressed against each other at the contact face by the action of reaction wood, and the “tension fork” where the two connected stems are bent away from each other by gravity or wind action leading to tensile stresses in the connective zone. It is well known that trees permanently try to improve their own designs by adaptive growth in order to maintain a state of constant mechanical stress at the tree surface. In the case of these two different types of tree fork, adaptive growth also takes different ways in order to avoid high localized stress peaks which could lead to failure of the tree under wind loading. In this paper only the tension fork is assessed with respect to its shape optimization by computer simulation of adaptive growth. It is shown that the tensile fork is shape optimized in a very perfect way in order to avoid any dangerous localized stress peaks (notch stresses) which could lead to failure of the tree.