z-logo
open-access-imgOpen Access
Connections with Connexins: the Molecular Basis of Direct Intercellular Signaling
Author(s) -
Bruzzone Roberto,
White Thomas W.,
Paul David L.
Publication year - 1996
Publication title -
european journal of biochemistry
Language(s) - English
Resource type - Journals
eISSN - 1432-1033
pISSN - 0014-2956
DOI - 10.1111/j.1432-1033.1996.0001q.x
Subject(s) - connexin , connexon , microbiology and biotechnology , biology , gap junction , gating , intracellular , ion channel , second messenger system , cell signaling , signal transduction , genetics , receptor , neuroscience
Adjacent cells share ions, second messengers and small metabotes through intercellular channels which are present in gap junctions. This type of intercellular communication permits coordinated cellular activity, a critical feature for organ homeostasis during development and adult fe of multicellular organisms. Intercellular channels are structurally more complex than other ion channels, because a complete cell‐to‐cell channel spans two plasma membranes and results from the association of two half channels, or connexons, contributed separately by each of the two participating cells. Each connexon, in turn, is a multimeric assembly of protein subunits. The structural proteins comprising these channels, collectively called connexins, are members of a highly related multigene family consisting of at least 13 members. Since the cloning of the first connexin in 1986, considerable progress has been made in our understanding of the complex molecular switches that control the formation and permeabity of intercellular channels. Analysis of the mechanisms of channel assembly has revealed the selectivity of inter‐connexin interactions and uncovered novel characteristics of the channel permeabity and gating behavior. Structure/function studies have begun to provide a molecular understanding of the significance of connexin diversity and demonstrated the unique regulation of connexins by tyrosine kinases and oncogenes. Finally, mutations in two connexin genes have been nked to human diseases. The development of more specific approaches (dominant negative mutants, knockouts, transgenes) to study the functional role of connexins in organ homeostasis is providing a new perception about the significance of connexin diversity and the regulation of intercellular communication.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here